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Articles 
 

Kepler’s Search for the Creative Harmonies 
“Not every intuition is false.  For Man is the image 
of God, and it is quite possible that in his explor-
ation of the world’s adornments, his intentions are 
the same as God’s.  For the world partakes in 
quantities, and the human spirit comprehends noth-
ing as clearly as quantity, for the understanding of 
which he has evidently been created.”   

Kepler in a letter to Chancellor Herwart von Hohen-
burg. 

“The ideas of quantities have been and are in God 
from eternity, they are God himself; they are there-
fore also present as archetypes in all minds created 
in God’s likeness.  On this point both the pagan 
philosophers and the teachers of the Church 
agree.” 

Kepler in his introduction to Mysterium Cosmographi-
cum. 

Overture 

Johannes Kepler (1571-1630) has gone down in history 
as a great mathematician and astronomer, renowned for 
his discovery of the three laws of planetary motion 
named after him.  He lived in an age when empirical 
science and the use of mathematics was beginning to 
overtake theoretical speculation, and observations which 
contradicted the opinions of ancient philosophers such as 
Aristotle were no longer rejected out of hand. Although a 
new age was dawning, Kepler nurtured a deep and life-
long interest in an ancient cosmology, which he sought 
to revitalise by making use of his considerable math-
ematical prowess.  He explained his ideas in several 
highly original books, in particular Mysterium Cos-
mographicum (published in 1597) and Harmonice Mundi 
(published in 1619), which have mostly been ignored by 
scientists, even though the latter contained his third law, 
arguably the most important law in astronomy discov-
ered in the 17th Century.  Kepler repeatedly stressed the 

importance of both these works, and he considered Har-
monice Mundi to be the fulfilment of his life’s work.  

Kepler was well aware of the major changes taking place 
in human consciousness set in motion by Copernicus and 
the Renaissance.  He considered it his calling to develop 
a cosmology which united recent discoveries in astron-
omy, several of which had been developed by him, with 
the essence of ancient traditions.  His search for the 
foundations of cosmic harmony was central to this work.  
By taking this ancient idea, by attempting unsuccessfully 
to integrate it into the birth of modern astronomy, and by 
wrestling with the inconsistencies of his failed attempts, 
he discovered the three laws of planetary motion, still 
valid today. 

Kepler had intended to become a Lutheran minister, and 
spent five years at the seminary in Tübingen (Germany). 
Here he was introduced to the ideas of Copernicus by his 
mathematics teacher Michael Mästlin, and he soon be-
came a strong defender of a heliocentric universe.  His 
growing interest in astronomy caused him to abandon his 
vocation when he realised that he could still contemplate 
God by studying the heavens.  He believed that the har-
mony and beauty inherent in the universe were the 
means towards an understanding of God: ‘I was deter-
mined to be a theologian; I was distressed by this for a 
long time.  But look!  Even in astronomy my work wor-
ships God.’  In 1594 he left the seminary to take up a 
teaching post in Graz (Austria). 

We know from his correspondence with Herwart von 
Hohenburg [1] that Kepler made use of the monochord 
(an instrument with only one string and a moveable 
bridge) when he began to study musical harmony in 
1599.  He wanted to discover the consonant intervals by 
using his sense of hearing. (Kepler had poor eyesight – 
not a good precondition for an astronomer!) His inten-
tion at the time was to write a cosmology based on musi-
cal intervals – an intention which had to wait twenty 
years for its fulfilment.  In the course of his musical 
studies he rediscovered the natural harmonics first ex-
plored by Pythagoras two thousand years earlier.  Like 
Pythagoras, Kepler believed that because God had cre-
ated humankind in His image, it would be possible to 
find the harmonies underlying all of creation by intent 
listening.   

Pythagoras 

The harmony of the spheres is usually considered a fan-
ciful myth going back to Greek times, and in particular 
to the philosopher Pythagoras (6th Century BCE). Py-
thagoras and his followers believed in the unity of the 
cosmos; the observations of astronomy, the cycles of 
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time, the intervals of music, the ratios of arithmetic, and 
the concepts of geometry were all seen as grounded in a 
harmonious and overarching universal structure; more-
over, this same harmony was inherent in the structure of 
the human mind.   

The Greeks had two entirely different words for number, 
one expressing quality (arithmos), the other quantity or 
size (megethos). The supreme importance given to the 
study of number as quality was based on a realisation 
that only a deep understanding of numbers and their 
relationships enabled the human mind to recognise the 
universal harmony.   

Pythagoras studied geometry with the Ionian philosopher 
Thales, and arithmetic and music with the priests of 
Thebes in Egypt.  In Egypt all education was controlled 
by the temple priests.  This was to ensure that those as-
piring to leadership studied and worked according to the 
sacred canon of number and proportion, for only in this 
way could the ancient wisdom be preserved. The purpose 
of Pythagoras and his school was to keep these traditions 
and the inspirations associated with them alive. 

The main musical instrument in use at the time was the 
Egyptian shoulder harp, which like the modern harp, had 
strings of different lengths.  Pythagoras is credited with 
the discovery that the sounds produced by the strings 
depended on their lengths, that these lengths could be 
described by numbers, and that the ratios [2] of these 
numbers (the relative proportions of the length of the 
strings) determined whether the sound was harmonious 
or not.  

Legend has it that as he was walking past a blacksmith 
shop, he heard the sounds of many different hammers 
beating the anvils.  He stopped to listen, for the hammers 
created a harmonious sound.  But there was one excep-
tion, which created a distinctly unpleasant sound to his 
ear. He ran into the shop to investigate, and discovered 
that, with one exception, the weights of all the hammers 
were in simple proportions to each other. In other words, 
hammers with half, two thirds, or three quarters of the 
weight of a particular hammer, all generated harmonious 
sounds. On the other hand, the hammer that was generat-
ing disharmony when struck along with any of the others 
had a weight that bore no simple relationship to the other 
weights. 

Pythagoras was inspired to carry out further investigat-
ions with different materials, and he applied his discov-
ery to a variety of sounds.    He used bells, different vol-
umes of liquid in equal sized glasses, and different ten-
sions in strings of equal length, adjusted by suspended 
weights.  Figure 1 shows a 15th Century woodcut il-
lustrating Pythagoras’ musical investigations.   

 

Tubal is Tubal Cain, a biblical figure known for being 
the first metal worker and blacksmith (Genesis 4:22).   
Philolaus (c. 470 – c. 385 BCE) was a Greek philosopher 
and follower of Pythagoras. He believed that the founda-
tion of everything is the harmonious combination of the 
finite and the infinite [3].  

Through such investigations Pythagoras put on a firm 
foundation what ancient peoples had long intuited.  Two 
or more tones based on small whole number (integer) 
relationships produce harmonious sounds that are easy 
on the ear and pleasant to the soul.  The weight of a 
hammer, or the length of a string, could be described by 
numbers, and the sounds produced by these ‘instru-
ments’ were perceived as harmonious when the numbers 
were in in simple relationships with each other.   

Pythagoras thus demonstrated that musical intervals, i.e. 
the difference in pitch between two musical tones, could 
be explained by numerical ratios.  This is generally re-
cognised as the first rational attempt to explain human 
experience objectively, thereby providing a bridge be-
tween quantity and quality, between the human and the-

divine 

The ancient Greek word ἁρµονία (harmonia) did not 
denote harmony as understood today, but meant rather 
‘union’, ‘agreement’, or ‘concordance’ with the under-
lying order of the universe.  Music, astronomy, arithme-
tic and geometry were always studied together (the quad-
rivium), a practice which continued right into the Middle 
Ages.  Figure 2 shows Musica and Pythagoras on the 
royal portal of Chartres cathedral. 

 
Figure 1 from ‘Theorica Musicae’ by Franchinus 

Gaffurius 
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Most famously, Pythagoras 
experimented on a monochord.  
By stopping the string at vari-
ous lengths, he discovered the 
harmonic overtones [4].  To-
gether with the open string, its 
different lengths vibrate two, 
three, etc times as fast. There is 
an inverse relation between the 
string length and the vibration 
frequency.  Half the length, 
produces twice the frequency, 
and a pitch double that of the 
open string.  Stopping a string 
at two-thirds (2:3) its length 
(from thee right) produces a 
pitch one and one-half (3:2) 
times that of the open string, an 
interval known as a perfect 
fifth.  See Figure 3. 

The teachings of Pythagoras 
were handed down orally for 
several centuries, and were first 
written down in the days of 
Aristotle (384-322 BCE). Since that time, they have 
formed an essential chapter in the study of music through 
the ages. 

Figure 4 shows the basic Pythagorean intervals in a de-
tail from Raphael’s fresco in the Vatican usually known 
as ‘The School of Athens’ [5].  It shows the Pythagorean 
harmonic intervals; tone (epogdoon) [6], fourth (diates-
saron), fifth (diapente), and octave (diapason).  The 
diagram illustrates the principles of a Greek lyre.  The 
four strings are of equal thickness and under equal ten-
sion, with relative lengths 6 (VI), 8 (VIII), 9 (IX) and 12 
(XII) units.  When plucked,  

• the interval between VI and XII is an octave (12:6 = 
2:1), 

• the interval between VI and IX, and between VIII 
and XII is a fifth (9:6 = 3:2), 

• the interval between VI and VIII, and between IX 
and XII is a fourth (8:6 = 4:3), 

• the interval between VIII and IX is the difference 
between a fourth and a fifth, which we call a major 
tone (9:8) today.  This is not a harmonious interval 
[7].  

Under Raphael's diagram  is a triangular figure com-
posed of four rows of ones (I). This is the tetractys, 
which is the Pythagorean perfect number 10, the sum of 
the first four numbers (1, 2, 3, 4), which make up the 
intervals played on a Greek lyre.  These harmonies were 
used to accompany speech, but not song.  Moreover, the 
Pythagorean number 10 comprises all numbers, and thus 
was regarded as sacred and as the "mother of the uni-
verse." 

The Spheres 

‘How sweet the moonlight sleeps upon this bank! 
Here will we sit and let the sounds of music 
Creep in our ears: soft stillness and the night 
Become the touches of sweet harmony. 
Sit, Jessica. Look how the floor of heaven 
Is thick inlaid with patines of bright gold: 
There's not the smallest orb which thou behold'st 
But in his motion like an angel sings, 
Still quiring to the young-eyed cherubins; 
Such harmony is in immortal souls; 
But whilst this muddy vesture of decay 
Doth grossly close it in, we cannot hear it.’ 

Lorenzo in Act V, scene 1 in The Merchant of Venice 

The idea of heavenly orbs, or spheres, carrying the plan-
ets on their celestial journeys, also goes back to Greek 
antiquity.  It was first recorded in the cosmology of An-
aximander (a contemporary of Pythagoras) in the 6th 
Century BCE.  Plato (428-348 BCE) believed that the 
universe was a perfect creation, and that therefore the 
orbs had to be spherical, with a crystal sphere supporting 

 
Figure 2 

 
Figure 3 The vibrations of a plucked string when 

stopped at different lengths.  Each vibra-
tion sounds its own harmonic. 

 

 
Figure 4   Image from 
http://arthistoryresources.net/renaissance-art-
theory-2014/pythagoras-music-proportion.html 
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the fixed stars.  In the Timaeus [8]. he describes the con-
struction of the universe (kosmos) according to ratios 
corresponding to musical intervals, thereby offering an 
explanation of its order and beauty.  His pupil Eudoxus 
developed the idea of concentric spheres supporting the 
planets, with three or four spheres needed to support 
each of the seven planets [9].  Aristotle increased the 
number of spheres to 47, and explained that the gods 
were able to bring about their rotation about their com-
mon centre Earth, by being loved [10].  He wrote that 
Pythagoras and his followers believed that the relative 
motion of the spheres produced musical tones.  Nested as 
they were within each other, a kind of ether friction cre-
ated harmonious sounds because the distances between 
them were believed to be in the same proportions (ratios) 
as the proportions of the tones in consonant music.   

He explained that the reason no one was able to hear 
these harmonies (except possibly Pythagoras himself) 
was because they are with us since birth, and never hav-
ing experienced their absence, we are unable to notice 
their presence.  Aristotle himself was unable to accept 
any of this, and dismisses the celestial harmony on two 
counts: first, no one is able to actually hear the music, 
and second, given that all physical objects produce a 
sound of some kind, with small objects producing soft 
sounds, and larger objects louder sounds, the enormity of 
the spheres would imply that the sound they produced 
would have ‘an intensity many times that of thunder’ 
[11]. 

The Egyptian Claudius Ptolemaeus (about 100-170 CE), 
better known today as Ptolemy, was one of the dominant 
figures of ancient science.  Although best known as an 
astronomer, he wrote definitive textbooks on geography 
and optics.  His book ‘Harmonics’ discusses pitches, 
intervals and modulation, concepts which he related to 
human souls as well as to celestial bodies.   

He developed a geometric model of the solar system, 
with a reduced number of spheres per planet.  Although 
the necessary calculations were complicated [12], 
Ptolemy’s model was able to predict the positions of the 
planets relative to the fixed stars to a higher degree of 
accuracy than any of the preceding models.  It stood the 
test of time, and was in use for almost 1500 years, until 
astronomers realized that their increasingly accurate 
observations no longer matched the predictions of 
Ptolemy’s model. 

The time had come for Copernicus (1473-1543) to de-
velop his heliocentric model, which he did in his con-
sciousness-changing book De revolutionibus orbium 
coelestium (On the Revolutions of the Celestial Spheres) 
published in 1543.  Although Copernicus does not dis-
cuss the actual nature of the spheres in detail, his few 
allusions suggest that he did not think of them as phys-
ical entities.  He placed the sphere of the Moon around 
the Earth and moved the Sun from its sphere to the 

centre of the universe. The planetary spheres circled the 
Sun in the order Mercury, Venus, the great sphere con-
taining the Earth and the sphere of the Moon, then the 
spheres of Mars, Jupiter, and Saturn. He considered the 
outermost sphere, the celestial sphere of the stars, to be 
fixed and unmoving.  Although Copernicus’ heliocentric 
model considerably simplified the calculation of planet-
ary positions, it had the disadvantage of contradicting the 
appearances.  His model could be thought, but not ex-
perienced directly.   

But it could be used to calculate the relative distances of 
the planets from the Sun, and from each other.  When 
first computed, these distances appeared arbitrary, and 
their proportions bore no relation to the perfection of a 
universe created by God.  Tycho Brahe (1546-1601), for 
example, famed for the accuracy of his observations, 
found it difficult to reconcile the vastness of the calcu-
lated distance between Saturn and the fixed stars. 

Mysterium Cosmographicum 

Kepler published his first book, the Mysterium Cos-
mographicum (usually translated as The Cosmic Mys-
tery) in 1597 [13].  On July 9 1595 (he recorded in his 
diary) in the middle of an astronomy lesson introducing 
the conjunction of Jupiter and Saturn, Kepler was struck 
by an idea with such force that it became his leitmotiv for 
the rest of his life.  The essence of his idea was that the 
structure of the universe is built on a small number of 
regular polygons [14].  He had drawn a diagram on the 
board, when he suddenly realised that the two circles 
(representing the orbits of Jupiter and Saturn) drawn 
inside and outside the triangle (representing the positions 
of their conjunctions) were in the same proportion as the 
actual orbits of Jupiter and 
Saturn.   

If an equilateral triangle (the 
first regular polygon) could 
be fitted between the orbits of 
Saturn and Jupiter (the two 
outermost planets), then, he 
reasoned, a square should fit between the orbits of Jupi-
ter and Mars, and a pentagon between Mars and Earth, 
followed by a hexagon between Earth and Venus, and a 
heptagon between Venus and Mercury.   

Although he soon discovered that this two-dimensional 
model didn’t work, he returned to the idea of regular 
polygons underlying the structure of the universe 24 
years later in Harmonice Mundi.   

Kepler realized that because the planets move in three-
dimensional space: ‘One has to look for three dimen-
sional shapes, and behold, dear reader, now you have my 
discovery in your hands.’  He had found the three dimen-
sional shapes he needed in Plato’s Timaeus. 
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By an amazing stroke of coincidence (or luck?) only six 
planets were known at the time, and there are just five 
perfect three dimensional solids (polyhedra).  These are 
the Platonic solids.  They are perfect because when 
placed inside a sphere all their vertices (corners) touch 
the inner surface of the sphere, and when a sphere is 
placed inside a Platonic solid, the outer surface of the 
sphere touches every face exactly in its centre.  For Kep-
ler, the fact that the five Platonic solids could be per-
fectly placed within the six planetary orbits (he hadn’t 
yet established that the orbits are in fact elliptical) was 
proof enough that the universe was created by divine 
arrangement. 

And it worked, sort of.  A cube fitted into Saturn’s or-
bital sphere, into which could be fitted Jupiter’s orbital 
sphere, into which fitted a tetrahedron, which held the 
orbital sphere of Mars.  Between the orbital spheres of 
Mars and Earth came the dodecahedron.  Between Earth 
and Venus the icosahedron, and between Venus and 
Mercury the octahedron. The fits were not exact, and 
Mercury’s orbital sphere touched the edges rather than 
faces of the octahedron.  But the young astronomer was 

convinced, and at the age of just 25, he had not only 
explained the ‘cosmic Mystery’, but had discovered the 
underlying principle of the divine harmony inherent in 
the universe.   

But there is more to the Mysterium Cosmographicum.  In 
the second part Kepler checks the proportions of his 
model against the observed data.  He admits that his 
calculations demonstrate just how rough and ready the 
model is.  The planets move in eccentric orbits around 
the Sun, so that their distance from the sun varied con-
tinuously.  Kepler gave his planetary spheres sufficient 
thickness to accommodate this variation, with inner and 
outer walls representing minimum and maximum dis-
tance from the sun (perigee and apogee).  He blamed 
other discrepancies on the unreliability of Copernicus’ 
data, but he went along with Copernicus by accepting 
that the spheres, as well as the Platonic solids, were 
geometric constructs, rather than physical entities.  Much 
of the second part of Mysterium Cosmographicum deals 
with defending a model he already knew to be inexact.   

Kepler’s Astonishing Idea 

But in the final section of Mysterium Cosmographicum, 
by attempting to answer a simple question which no one 
had asked before, Kepler demonstrated his genius.   

Having convinced himself that there can only be six 
planets in our solar system (because there are only five 
perfect Platonic solids to fit between them), and that 
their distances from the sun are what they are because of 
the geometry of the Platonic solids, Kepler moves on to 
inquire into the relationship between a planet’s distance 
from the sun and the length of its year, the time needed 
for a complete revolution around the sun (its period).  He 
discovered, to his surprise, that the further a planet is 
away from the sun the slower it travels, i.e. it not only 
does it have a greater distance to travel along its orbit, 
but it does so at a slower pace.  This was of course all 
part of God’s plan, but Kepler wanted to know why. 

He reasoned that there must be a force emanating from 
the sun which drives the planets along their orbits.  The 
outer planets move more slowly because this driving 
force decreases as the distance increases, ‘as does the 
force of light’.  In the second edition of Mysterium 
Cosmographicum (published in 1621), he explained 
himself: ‘There was once a time when I firmly believed 
that the motive force of a planet was a soul. . . Yet, as I 
reflected that this cause of motion diminishes in propor-
tion to its distance from the sun, I came to the conclu-
sion that this force must be something substantial.’  By 
‘substantial’ he meant ‘an unsubstantial entity emanat-
ing from a substantial body’, in the same way that for 
Kepler light was something ‘substantial’ because it 
emanated from a substantial sun [15].   

Kepler went further.  If the force which moves the plan-
ets emanates from the sun, why was the sun not the 

Figure 5   The five Platonic solids as illustrated 
in Kepler’s Harmonice Mundi.  Their relation to 
the four (Greek) elements, and the fifth (the 
quintessence) are described in Plato’s Timaeus. 
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Kepler’s Harmonice Mundi.  Their relation 
to the four (Greek) elements, and the fifth 
(the quintessence) are described in Plato’s 
Timaeus. 

 

 
 
Figure 6   Kepler’s illustration of how the Platonic solids 

nest into the planetary spheres.  From Mysteri-
um Cosmographicum. 

 



 6 

centre of their orbits; in other words, why were the orbits 
eccentric?  He reasoned that there must be a second force 
located in the planet itself, which opposed the force of 
the sun.  The ‘unsubstantial entity emanating from the 
sun’, and the even more mysterious force opposing it, 
were the first intimations of gravity and inertia in the 
history of human consciousness [16].   

Throughout these deliberations Kepler is attempting to 
validate his theory that the relationship between a 
planet’s distance from the sun and its orbital period is a 
linear one, even though he senses that it will turn out 
wrong.  He takes his readers into his confidence, and 
confesses that his calculations do not support his theory.  
He laments: ‘Though I could have foreseen this from the 
beginning, I nevertheless did not want to withhold from 
the reader this spur to further efforts.  Oh, that we could 
live to see the day when both sets of figures agree with 
each other’ [17].  

Kepler did live to see that day. In the second edition of 
Mysterium Cosmographicum (1621) he added to the 
paragraph quoted above: ‘We have lived to see this day 
after twenty-two years and rejoiced in it.’   He had fig-
ured out the answer two years earlier, in the final section 
of Harmonice Mundi.  He presented it to the world as the 
eighth of a list of thirteen propositions which he needed 
for his investigation of celestial harmonies.  For posterity 
it became known as Kepler’s third law of planetary mo-
tion, arguably the crowning achievement of his life’s 
work, although Kepler did not see it this way.  It says a 
great deal about the working of Kepler’s mind that he 
considered his third law, as well as the first two, as mere 
by-products of his quest to prove beyond doubt the 
fundamental harmony in God’s creation.   

 

Interlude:  Astronomia Nova and the first two Laws of 
Planetary Motion 

In 1600 Kepler moved to Prague where he began to ana-
lyse Tycho Brahe’s closely guarded astronomical data.  
Upon the latter’s death in 1601 Kepler was appointed 
imperial mathematician to the emperor Rudolf II, and 
gained full access to Brahe’s observations, which he 
used to determine the orbit of Mars.  A task which he 
thought he would manage in a couple of weeks, took him 
four years, in large part owing to his refusal to relinquish 
a circular orbit.  He was able to establish the second law 
(on their journey round the sun planets sweep out equal 
areas in equal times) in less than a year by continuing to 
assume an eccentric circular orbit.  But it took another 
three years before the accuracy of Brahe’s observations 
forced him to conclude that the orbit of Mars was an 
ellipse (today referred to as his first law, which applies to 
all the planets).   

Kepler liked to confide in his readers.  Here is a passage 
from Astronomia Nova describing his mental agonies 

over the elliptical orbits: ‘Why should I mince my 
words?  The truth of Nature, which I had rejected and 
chased away, returned by stealth through the back door, 
disguising itself to be accepted. . .  I thought and 
searched, until I went nearly mad, for a reason why the 
planet preferred an elliptical orbit (to my circular one). . . 
.  Oh, what a foolish bird I have been!’ [18].  

Although he had largely completed the task by 1605, 
publication was delayed for four years by legal battles 
with the heirs of Tycho Brahe, who were the rightful 
owners of Tycho’s observations, but which Kepler had 
purloined shortly after his death, as he admitted in 1605, 
when he wrote to his friend and fellow astronomer Chris-
topher Heydon: 

‘I confess that when Tycho died I quickly took advan-
tage of the absence, or lack of circumspection of the 
heirs, by taking the observations under my care, or per-
haps usurping them . . .’  [19].    

A settlement was finally made in 1609, with Kepler 
agreeing to an introduction written by Franz Tengnagel, 
Brahe’s son-in-law and one-time assistant.  Astronomia 
Nova (A new Astronomy) describes Kepler’s tortuous 
journey towards establishing the orbit of Mars, during 
the course of which he took his readers round every 
wrong turn and blind alley.  Even so, he was lucky.  The 
eccentricity of Mars is second only to that of Mercury 
(which being so close to the sun is difficult to observe 
with any degree of accuracy).  Jupiter and Saturn have 
eccentricities half of that of Mars, and that of Venus is 
even less.  (See table 3 below for the eccentricities of the 
planets.)  It is unlikely that Kepler would have been able 
to calculate any of the other orbits using Brahe’s obser-
vations.   

He once likened [20] the ellipses to a cartload of dung, 
which he was forced against his will to bring into his 
first law, in order to get rid of a much larger cartload of 
dung, namely, Ptolemy’s cycles, epicycles, and equants.  
Yet later, in Harmonice Mundi, he realised that if the 
orbits of the planets really were circles, there would be 
no celestial harmony!  The elliptical orbits were destined 
to reveal a music of the spheres more subtle than any that 
had gone before. 

 

Years of Sorrow in Linz 

In 1611 Kepler’s wife Barbara began having epileptic 
seizures, and died soon afterwards.  In the same year his 
six year old son Friedrich died of smallpox.  Religious 
and political tensions in Prague forced Kepler to relocate 
to Linz in 1612.  A teaching post at a small district 
school was set up for or him by his supporters when it 
became clear that after the death of the emperor Rudolf 
II in 1612, he could no longer stay in Prague.  The regu-
lar salary augmented the rather haphazard income from 
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Matthias II who had succeeded his brother Rudolf II as 
emperor, and had reaffirmed Kepler’s position as im-
perial mathematician. 

Kepler was as open and honest about his beliefs as he 
was about his calculations, and although his protestant 
beliefs were tolerated, he was forbidden to take part in 
the Lutheran Divine Service in Linz because he refused 
to sign up to the dogma of the omnipresence (Ubiquitas) 
of Christ’s body and blood in the bread and wine of the 
eucharist, as promulgated in the 1577 Formula of Con-
cord, the authoritative Lutheran statement of faith.    He 
was however allowed by special dispensation to partici-
pate in the celebration of the eucharist in a nearby village 
with a more open-minded minister. 

In 1615 he received word from his sister that his mother, 
Katharina, had been accused of witchcraft.  If the ac-
cused did not confess, it was common to use torture to 
extract a confession; and regardless of whether the vic-
tim confessed, a cruel and merciless death awaited her.  
Kepler’s fame was able to circumvent the worst, but his 
mother’s fate preyed on his mind for the following six 
years.  The (ultimately successful) attempt to save her 
required many carefully worded letters, and several visits 
to the consistorial council in Stuttgart.  Katharina was 
imprisoned for more than a year and subjected to verbal 
interrogation, which included a graphic description of 
the torture which would follow unless she confessed.  
Kepler drew up a detailed legal defence, and was able to 
show that the evidence against his mother amounted to 
no more than malicious rumours. She was finally re-
leased in 1621.  

The death of his wife and subsequent legal conflict over 
her will, the religious controversies, his mother’s witch 
trial, the battle he fought with his conscience; all these 
tribulations massed like dark clouds over his soul, a 
darkness further deepened by the death of two of his 
children in 1617 and 1618.  But none of this diverted 
him from completing what he considered the crowning 
glory of his life; publication of Harmonice Mundi in 
1619.  From these seven years of darkness broke forth a 
grand musical interpretation of the harmony of the 
world. 

Harmonices Mundi 

The full title of Kepler’s most important book is ‘Ioannis 
Keppleri Harmonices Mundi Libri V’ (Johannes Kep-
ler’s World Harmony in Five Books), which was pub-
lished in the summer of 1619.  He dedicated it to King 
James VI and I of Great Britain, possibly sensing in him 
a worthy successor to Emperor Rudolf II as a patron of 
Rosicrucian and hermetic interests.  In the first two 
books Kepler discusses two and three dimensional ge-
ometry; in the other three he concerns himself with 
music, and the closely related subjects of astronomy and 
astrology.   

Kepler picks up more or less where he had left off 22 
years earlier in Mysterium Cosmographicum.  He refined 
his ideas on geometric harmony, and investigated tessel-
lation, the rules by which one or more different regular 
polygons tessellate, i.e. cover a plane area with no gaps 
or overlaps.  He extended these ideas to three dimensions 
in the five regular polyhedra (the Platonic solids), and 
the thirteen irregular polyhedra (the Archimedean solids) 
[21].  He also investigated the four regular star polyhedra 
(the Kepler-Poinsot solids). 

Having re-established for himself the harmony inherent 
in geometry, and remembering the flash of insight he had 
in July 1595, Kepler now attempted to discover the basis 
for the seven primal consonant intervals in geometric 
relationships, rather than in numerical ones: ‘I don’t 
want to prove anything by means of mystical numbers, 
and I also believe that such proofs are not possible.’  He 
therefore tried to explain them (at least to his own satis-
faction) by relating them to regular polygons. 

He imagined the two ends of a string joined to form the 
circumference of a circle, which was then divided by 
regular polygons.  As there are infinitely many regular 
polygons, he limited himself to those which can be con-
structed using only straightedge and compasses (as the 
Greeks did).  He considered other regular polygons such 
as the heptagon and nonagon as ‘unknowable’ [22], and 
not used by God to ‘embellish the world’.  The first five 
constructible regular polygons are the triangle, the 

square, the pentagon, the hexagon, and the octagon.  

The divisions of the string are listed in such a way that 
the sum of the numerators and denominators of the resul-
ting fractions provides the denominator of the next frac-
tion.  From each fraction two branches arise, but the 
sequence is broken off as soon as the sum of the numera-
tor and denominator gives rise to a polygon which can-
not be constructed with straightedge and compasses 
only. 

See fractions highlighted in yellow in table 1.  He did not 
include the two red highlighted fractions, because when 
inverted these are the fourth and major third intervals 
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raised an octave, which he had already found an octave 
lower [23]. 

 

From these geometri-
cally derived harmonic 
intervals Kepler derived 
the remaining intervals 
in the diatonic scale.  
He kept the Pythagorean 
second (9:8), (the epog-
doon); derived the ma-
jor seventh (15:8) by 
‘narrowing’ the Pythag-
orean seventh (243:128) 
[24], and derived the 
minor 

seventh (9:5) by further ‘narrowing’ the major seventh 
[25].  

It is possible to illustrate the relationships between these 
intervals in a circle of consonant harmonic intervals.  See 
Figure 7.  The angles are calculated by multiplying log2 
of each interval by 180° [26]. 

 
Figure 8 shows the harmonic divisions of a musical 
string.  When inverted, the fractions become the ratios of 
the consonant intervals which Kepler found using regular 

polygons.

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

Kepler’s next step was to locate these ratios in the 
movements of the planets.  Previous theories of cosmic 
harmony had assigned a single tone to each planet 
(because of their assumed circular orbits).  Kepler 
worked long and hard on this question.  In his first 
attempt he showed that no harmonic intervals are to be 
found in the orbital periods of the planets.  He drew a 
blank with his second attempt which compared the 

ratios of the distances at perigee and apogee.  He failed 
in his third attempt which tried the ratios of the maxi-
mum and minimum orbital speeds of the planets. Next 
he tried to relate the times it took the planets to cover a 
unit distance along their orbits.  Again, no luck. 

Kepler was not one to give up easily, and after con-
siderable trial and error, all described in the usual self-

 

Ratio Interval 

2:1 Octave 

3:2 Perfect fifth 

4:3 Perfect fourth 

5:3 Major sixth 

5:4 Major third 

8:5 Minor sixth 

6:5 Minor third 

Table 2  Kepler’s primal 
harmonic intervals 

 

 
Figure 7    The circle of Kepler’s ‘primal’  harmonic             

intervals.  
 

 
                  Figure 8  The harmonic divisions of a musical string.  
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critical detail, he realised that with elliptical orbits the 
pitch of each tone would vary in proportion to the 
planets’ varying orbital speeds.  At long last he found 
what he was looking for.   

But first he explained for the benefit of his readers 
(and possibly Aristotle!) how it was possible to per-
ceive sound through the movements of the planets:  ‘In 
fact, there are no real sounds in the heavens, and the 
movement is not so turbulent that a whistling is pro-
duced by friction with the heavenly air.’  [27]  Kepler 
explained that the celestial harmonies are carried to us 
by the light with which we see the planetary move-
ments, and it is the light which enables us to ‘hear’ the 
music in our minds. 

He imagined that the daily angular motion as seen 
from the sun was a measure of the frequency of a 
musical tone.  It follows from Kepler’s second law that 
a planet moves faster in perihelion (when closer to the 
sun), slows down towards aphelion (further away from 
the sun), then speeds up again.  As the velocity chan-
ges along the planet’s orbital path, so does the tone, 
running through a musical interval the size of which 
depends on the eccentricity of the orbit.  The actual 
pitch of the tone depends on the (average) distance 
between the Sun and the planet.  It was in exploring 
this relationship that Kepler discovered the third law of 
planetary motion. 

Kepler’s Third Law 

Whereas the first two laws describe the movement of 
single planets, the third law describes the relationship 
between their movements.  Kepler defines the third 
law in the third chapter of Book Five.  Here he lists 13 
‘Propositions of Astronomy which are needed for the 
Investigation of the Celestial Harmonies’, which he 
considered essential for his exposition and proof that 
musical harmonies are to be found in the movement of 
the planets.  His third law is the eighth ‘Proposition’, 
merely one of the premises for his much larger goal.  

The third law states that the square of a planet’s period 
of rotation is proportional to the cube of its semi-major 
axis (the average distance from the Sun during peri-
helion and aphelion) [28].   

The third law (which of course wasn’t called that yet) 
is the only one of the 13 ‘Propositions’ for which Kep-
ler gives the date of its discovery.  He did this not be-
cause he considered it important for the further devel-
opment of astronomy (which of course it was), but 
because this particular ‘Proposition’ provided the an-
swer to the question he had to leave unanswered in 
Mysterium Cosmographicum, and which had occupied 
him for the past twenty-five years.   

 

Finding the Music 

The first example Kepler gave of how the two numbers 
of a musical interval are related to the angular orbital 
speed of a planet was that of Saturn. 

The maximum speed of Saturn at perihelion is 133 
seconds of arc (arcseconds) per day, its minimum 
speed at aphelion is 106 arcseconds per day.  The ratio 
133:106 is very close to 5:4, the ratio of a major third ( 
5×274×27 =135108).  He concluded that the 
music of Saturn is contained within the interval of a 
major third.  

Proceeding in this way, he calculated the intervals for 
every planet, but found that only four of them were 
consonant (Saturn, Jupiter, mars and Mercury).  See 
Table 3  [29]. 

 

Planet   Eccentricity    
of orbit 

Position Arcseconds per 
earth day 

  Dividing the ratio The intervals Kepler found 

Perihelion 133 Saturn       0.053 
Aphelion 106 

  133:106 = 1.255 Almost 5:4 (1.250) a major 
third 

Jupiter Perihelion 330 Almost 6:5 (1.200) a minor 

 
Figure 9  Sketch of an elliptical orbit (eccentricity and 

daily motion greatly exaggerated). 
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Perihelion 330 Jupiter       0.048 
Aphelion 270 

  330:270 = 1.222 
third 

Perihelion 2291 Mars       0.093 
Aphelion 1574 

  2291:1574 = 1.456 Almost 3:2 (1.500) a perfect 
fifth 

Perihelion 3678 Earth       0.017 
Aphelion 3423 

  3678:3423 = 1.074 Almost 16:15 (1.067) a se-
mitone 

Perihelion 5857 Venus       0.007 
Aphelion 5690 

  5857:5690 = 1.029 Almost 25:24 (1.042) a 
diësis 

Perihelion 23040 Mercury       0.206 
Aphelion 9840 

23040:9840 = 2.341 Almost 12:5 (2.400) an 
octave plus a minor third.  

Table 3  Kepler’s calculations of the seven planetary harmonic intervals 
Mercury’s song encompasses more than an octave, 
while that of Venus hardly changes.  Earth’s song va-
ries by just a semitone from mi to fa. Kepler couldn’t 
resist commenting that the earth sings ‘mi-fa-mi’, ‘so 
we can gather even from this that misery and famine 
reign on our habitat.’  [30] 

Kepler linked his planetary scales to the medieval 
modes, but added that they would have a completely 
different sound. As each planet accelerates and de-
celerates on its orbital journey, the pitch is constantly 
changing, and glides from one note to another (glis-
sando), sounding more like a cosmic siren than a musi-
cal scale.  With Saturn taking 30 years to sing the three 
notes of its song, and taking into account the limited 
vocal range of some of the planets, Kepler admitted 
that celestial harmonies would occur very infrequently 
[31].  Harmonies between three planets are fairly 
common, between four only over centuries, and be-
tween five only over millennia.  He suspected that if a 
grand alignment of all seven heavenly bodies could be 
calculated, it would pinpoint the exact moment of cre-
ation, but would never re-occur. Because the motions 
are in irrational proportions to each other, ‘they will 
never return to their starting point, even after infinite 
ages’. 

He widened his search for the remaining consonant 
intervals by considering what he called the convergent 
and divergent daily movement of pairs of adjacent 
planets; that is, he constructed new ratios as follows. 

• A convergent ratio is the minimum speed of one 
planet (at aphelion) : maximum speed of its 
neighbour (at perihelion), 

• A divergent ratio is the maximum speed of one 
planet (at perihelion) : minimum speed of its 
neighbour (at aphelion). 

Taking the Saturn-Jupiter pair as an example, 

Convergent ratio = Jupiter min. speed at aphelion : 
Saturn max. speed at perihelion 

    =  270:133 = 2.030,   an almost perfect octave.  

Divergent ratio  = Jupiter max. speed at perihelion : 
Saturn min. speed at aphelion 

    =  330:106 = 3.113,   close to an octave plus a fifth.  

Proceeding in this manner he found the intervals 
shown in Table 4, [33].  The last column shows the 
intervals brought into a single octave. 

Kepler has found six of his seven primal consonant 
intervals, and attentive readers will have noticed the 
obvious omission; there is no sign of the perfect fourth.  
This might have been acutely embarrassing for him, 
had he not called upon the one heavenly body he had 
not yet considered.   

Although the moon is not considered a planet in an 
astronomical sense, ancient traditions have always 
seen it as one of the seven planets in an esoteric sense 
[34].  Fortunately for Kepler, it turns out that the ratio 
constructed from the orbital speeds of the moon as 
seen from the earth at perigee and apogee is that of a 
perfect fourth! 

 

 

 

Planet 
Pair 

Type of ratio Dividing the ratio The intervals Kepler found Intervals 
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Convergent 270:133 = 2.030 Almost 2:1 (2.000) an octave Octave Saturn - 
Jupiter Divergent 330:106 = 3.113 Not far from 3:1 (3.000) an octave plus a 

fifth 
Fifth 

Convergent 1547:330 = 4.770 Almost 24:5 (4.800) double octave plus a 
minor third 

Minor third Jupiter - 
Mars 

Divergent 2291:270 = 8.485 Not far from 8:1 (8.000) three octaves Octave 

Convergent 3423:2291 = 1.494 Almost 3:2 (1.500) a perfect fifth Fifth Mars - 
Earth Divergent 3678:1547 = 2.378 Almost 12:5 (2.400) an octave plus a mi-

nor third 
Minor third 

Convergent 5690:3678 = 1.547 Not far from 8:5 (1.6) a minor sixth Minor sixth Earth - 
Venus Divergent 5857:3423 9= 1.711 Not far from 5:3 (1.667) a major sixth Major sixth 

Convergent 9840:5857 = 1.680 Almost 5:3 (1.667) a major sixth Major sixth Venus -
Mercury 

Divergent  23040:5690 = 4.049 Almost 4:1 (.000) a double octave Octave 

Table 4  Kepler’s additional calculations of the seven planetary harmonic intervals 

Kepler would not have been Kepler if he had left it at 
that.  He now needed to discover why God had created 
the cosmic harmonies.  As they cannot be heard on 
earth, surely some conscious being somewhere, be-
sides God himself, had to be able to hear them. In the 
epilogue to Harmonice Mundi, an essay in praise of the 
sun, Kepler suggested that the ‘intellect’ (self-
consciousness) best able to appreciate the planetary 
harmonies might reside in the place where they origi-

nated, namely, in the sun.  

‘For whose use are all these furnishings, if the globe 
(the sun) is empty? Indeed, do not the senses them-
selves cry out that fiery bodies dwell here which are 
receptive of simple intellects, and that in truth the sun 
is, if not the king, at least the palace of intellectual 
fire?’ 

The Golden Vessels of the Egyptians 

In the preamble to the Fifth Book of Harmonice Mundi 
Kepler wrote [35]: 

 ‘As regards that which I prophesied two and twenty 
years ago (in the Mysterium Cosmographicum), as 
regards that of which I was firmly persuaded in my 
own mind before I had seen Ptolemy's Harmonics, . . . 
for the sake of which I spent the best part of my life in 
astronomical speculations, visited Tycho Brahe, and 
took up residence at Prague: finally, as God the Best 
and Greatest, Who had inspired my mind and aroused 
my great desire, prolonged my life and strength of 
mind and furnished the other means through the liber-
ality of the two Emperors and the nobles of this prov-
ince of Upper Austria, . .  I have finally brought to 
light.’ 

He goes on to explain that he had been given a copy of 
Ptolemy’s ‘Harmonics’, by his mentor Herwart von 
Hohenburg, as he was composing the first four books 
of Harmonice Mundi.  Although Ptolemy’s work gave 
him ‘an extraordinary augmentation of my desire and 
incentive for the job’, he felt that it was outdated, that 
Ptolemy’s astronomy ‘was far from being of age’, and 
that the ‘crudeness of the ancient philosophy’ com-
pared poorly with the ‘exact agreement in our medita-
tions’.  He considered it divine providence, ‘the finger 
of God’, that two men centuries apart shared ‘the same 
conception as to the configuration of the world, al-
though neither had been the other's guide in taking this 
route.’ 

Kepler continues, ‘But now since the first light of 
dawn eight months ago, since the light of day three 
months ago, and since the sun of my wonderful specu-
lation has shone fully a very few days ago: nothing 
holds me back. I am free to give myself up to the sa-
cred madness, I am free to taunt mortals with the frank 
confession that I am stealing the golden vessels of the 
Egyptians, in order to build of them a temple for my 
God, far from the territory of Egypt. If you pardon me, 

 
Figure 10  Kepler’s planetary scales in modern nota-

tion.  Saturn’s notes sound one octave 
lower, Mercury’s notes one octave higher 
than written [32].  From 
https://hermetic.com/godwin/kepler-and-
kircher-on-the-harmony-of-the-spheres 



 12 

I shall rejoice; if you are angry, I shall bear up. The die 
is cast, and I am writing the book - whether to be read 
by my contemporaries or by posterity matters not. Let 
it await its reader for a hundred years, if God Himself 
has been waiting six thousand years for a witness.’ 

Kepler’s allusion to the golden vessels of the Egyp-
tians is sometimes interpreted as a riposte towards 
Ptolemy‘s ‘Harmonics’, in that he (Kepler) had 
achieved what Ptolemy had not. But Kepler had stud-
ied the Old Testament as a student, and he is referring 
here not to Ptolemy, but to a story told in Exodus.  The 
Hebrews, still captive in Egypt, purloined gold and 
silver ‘jewels’ and ‘ornaments’ from their Egyptian 
neighbours by ‘borrowing’ them, and then decamping 
with them across the Red Sea.  When the time came 
for them to build a tabernacle in the desert, they ‘of-
fered’ them to their Lord [36].  

An interesting rider to this story is that only in Martin 
Luther’s translation of the Old Testament are the stolen 
objects referred to as ‘vessels’ (Gefäβe).  More recent 
German translations, such as that of the Hebrew 
scholar Martin Buber, describe the stolen objects as 
‘utensils’ (Geräte), which is indeed closer to the 
Hebrew original, so perhaps Luther was thinking of 
cooking vessels.  

The Egyptians were unlikely to lend out their golden 
utensils, let alone their jewels, to mere slaves, so this 
story (like so much in the Old Testament) has a deeper 
meaning.  It seems likely that Kepler imagined the 
Hebrew people taking with them into the Promised 
Land Egyptian wisdom concerning the ancient teach-
ings of the harmonic structure of the universe, wisdom 
that through sheer hard work he himself had been able 
to re-discover, and offer to future generations.     

This fits in with Rudolf Steiner’s assertion that Kep-
ler’s lifelong quest for the harmony of the universe can 
be traced back to an ancient Egyptian incarnation when 
he had been a pupil of the Egyptian priests [37].  In 
spite of a difficult childhood, ill health, religious per-
secution, war, the deaths of several family members, in 
short, a life fraught with difficulties and hardship, the 
harmony he had experienced in an earlier life was his 
certain guide on an enterprise unique in the history of 
human consciousness [38].   

‘Behold, I have now completed the work which has 
been my vocation, having employed all the power of 
my mind which you gave me; I have revealed the glory 
of your works to those who will read my presentation, 
as much of their infinite riches as the narrows of my 
intellect could conceive.’ 

Kepler’s prayer of thanks at the end of Book Five of 
Harmonice Mundi. 

 

Coda 

Stanley Kubrick’s iconic science fiction film 2001 A 
Space Odyssey was released in 1968, the same year the 
Moody Blues went in search of the lost chord.  With 
the first moon landing imminent, interest in space was 
widespread, and ‘spaced out’ music was popular (es-
pecially among the Woodstock generation).   In Ku-
brick’s film the opening bars of Richard Strauss’ Also 
Sprach Zarathustra (sunrise), and György Ligeti’s 
pieces Lux Aeterna and Atmosphères introduced many 
people to music they might otherwise never have 
heard, but of course it bore no relation to the cosmic 
harmony discovered, and possibly even ‘heard’ men-
tally, by Kepler. 

During the course of the 20th Century a number of 
composers of ‘classical’ music felt inspired by cosmic 
space, but few, if any, appear to have been inspired by 
Kepler’s cosmic harmonies, or used his planetary 
scales, in their compositions.  The best known compo-
sition to pay tribute to the planets themselves is The 
Planets, composed in 1916 by Gustav Holst.  But Kep-
ler’s planetary songs are not made manifest, and the 
musical qualities of the planets are based almost en-
tirely on the characteristics of the Roman gods after 
whom they are named.    

Paul Hindemith (1895-1963) wrote an opera Die Har-
monie der Welt (The Harmony of the World), for which 
he wrote his own libretto. It was first performed in 
1957 in Munich.  It was inspired more by Kepler’s 
anxieties and the complexities of his life than by the 
heavenly harmonies he had discovered.  A symphonic 
suite has been drawn from the opera. 

In 1973 the Polish composer Henryk Gorecki was 
commissioned to write a symphony to celebrate the 
500th anniversary of the birth of his compatriot Coper-
nicus.  It became his second symphony (the Coperni-
can), and includes text from De revolutionibus orbium 
coelestium.  

Philip Glass wrote an opera Cosmic Symphony to Jo-
hannes Kepler, which premiered in Linz in 2009.  It is 
less concerned with Kepler the man, than with his ob-
sessive search for cosmic harmony, and his hope that 
he would find answers in the new science of astron-
omy, the principles of which he was instrumental in 
establishing [39].  Listeners are expected to decide for 
themselves how Glass’ music corresponds to Kepler’s 
lifelong quest, and how he might have ‘heard’ it in his 
mind.  

The summer of 2019 commemorates the 400th anniver-
sary of the publication of The Harmony of the World.  
Is there any composer out there composing a tribute to 
the music Kepler discovered?  

Endnotes and References 
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1.  Hans Georg Herwart von Hohenburg (1553–1622) 
was a Bavarian statesman and scholar, and 
a patron and correspondent of Kepler. 

2.  A ratio expresses a relationship between two quan-
tities. 

3.  Interestingly, from the point of view of this article, 
Philolaus is also credited with being the first to 
suggest that the Earth is not the centre of 
the universe. 

4.  An overtone is a tone above the fundamental (open 
string) tone, and can be heard together with it. 

5.  Raphael lived from 1483 to 1520, and the ‘The 
School of Athens’ was painted between 1509 and 
1511. 

6.  The omega (ω) is apparently a Renaissance “typo”, 
and should be an omicron (ο). 

7.  Epogdoon means literally 
‘a number equal to another plus an eighth thereof’.    
9/8 = 1 and 1/8.   

8.  The Timaeus was the only one of Plato’s dialogues 
available to medieval and early Renaissance schol-
ars. 

9.  In order of increasing distance from Earth located at 
the centre: Moon, Mercury, Venus, Sun, Mars, 
Jupiter, Saturn. 

10.  ‘The final cause, then, produces motion by being 
loved, but all other things move by being moved.’ 
Aristotle, Metaphysics.   

11.  https://en.wikipedia.org/wiki/Musica_universalis 

12.  He used a complex system of epicycles, eccentric 
deferents, and equants.   

13.  But the title implies much more; the Latin suffix 
‘graphicum’ implies an ‘exquisite’, or a ‘perfect’ 
cosmos; the Latin ‘mysterium’ is closely linked to 
the Greek ‘musterion’ (µυστεριον), referring both 
to the sacred mysteries and to the sacraments of 
Christianity. 

14.  A polygon is a two-dimensional figure whose 
sides are all equal in length, so that when drawn 
inside a circle (Plato’s perfect shape) all its cor-
ners touch the circumference of the circle, and 
when a circle is drawn inside a regular polygon, it 
touches all the sides exactly in their centres. 

15.  Quoted in Arthur Koestler (1961) The Watershed, 
a Biography of Johannes Kepler,  Heinemann’s 
Science Study Series, p 57. 

16.  More than 150 years later Newton struggled with 
the same problem.  In a letter to Richard Bentley 
he wrote: ‘Tis unconceivable that inanimate brute 
matter should (without the mediation of something 
else which is not material) operate upon & affect 
other matter without mutual contact; as it must if 
gravitation in the sense of Epicurus be essential & 

inherent in it. And this is one reason why I desired 
you would not ascribe (innate) gravity to me. That 
gravity should be innate, inherent & (essential) to 
matter so that one body may act upon another at 
a distance through a vacuum without the medi-
ation of any thing else by & through which their 
action or force (may) be conveyed from one to an-
other is to me so great an absurdity that I believe 
no man who has in philosophical matters any 
competent faculty of thinking can ever fall into it. 
Gravity must be caused by an agent (acting) con-
stantly according to certain laws, but whether this 
agent be material or immaterial is a question I 
have left to the consideration of my readers.’  
Source: 
http://www.newtonproject.ox.ac.uk/view/texts/nor
malized/THEM00258 

17.  Quoted in Koestler, p 58. 

18.  Quoted in Koestler, p 147. 

19.  Quoted in Koestler. p 161.  Heydon (15??-1623) 
was an English astronomer whose observations of 
Mars led him to conclude, along with Tycho 
Brahe, that the hitherto published positions were 
incorrect. 

20.  In a letter to the Danish astronomer Longomonta-
nus, whom he met in Prague. 

21.  The most well-known Archimedean solid is the 
truncated icosahedron, a.k.a. the soccer ball, with 
its 20 white regular hexagons and 12 black penta-
gons. 

22.  Latin ‘inscibilis’; ‘unwissbar’ is the German word 
Kepler used. 

23.   43×21 =83 and 54×21 =104=52 

24.  By use of the syntonic comma K = 80/81 
(243128×8081 =158). 

25.  By use of the deisis D = 24/25  (158×2425 
=95 ). 

26.  Logarithm with base 2.  

27.  Quoted in Bruno Gingras (2003) Johannes Kep-
ler’s Harmonices mundi: A “Scientific” Version 
of the Harmony of the Spheres, Part II,   
http://adsabs.harvard.edu/full/2003JRASC..97..25
9G 

28.  In mathematical shorthand,  T2 � D3   or  T2 = kD3    
or  T = kD1.5 

29.  Adapted from Bruno Gingras, op.cit. 

30.  Quoted in Koestler, p213. 

31.  Bruno Gingras, op.cit. 

32.  The not often used C clef shows the Martian scale 
to run from F to C, and Mercury’s from A to C in 
the next octave.   
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33.  Adapted from Bruno Gingras, op.cit. 

34.  As, for example, in the days of the week. 

35.  http://www.24grammata.com/wp-
content/uploads/2014/08/Kepler-Harmonies-Of-
The-World-24grammata.pdf 

36.  See Exodus 3;22, 11;2, 12;35-36, and 25;1-9.  

37.  In a lecture held in Leipzig on 14 September 1908 
in Egyptian Myths and Mysteries (GA106), and 
one in Hamburg on 25 May1910, in Manifesta-
tions of Karma (GA120). 

38.  In 1629, the last year of his life, in a letter to his 
future son in law Jakob Bartsch Kepler wrote: 
‘When the storm rages, and the state is threatened 
by shipwreck, we can do nothing more noble than 
to lower the anchor of our peaceful studies into 
the ground of eternity’.  

39.  https://philipglass.com/films/kepler/ 
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Annual Meeting of the Science and Maths 

Group (of the AS in GB) 
 
Saturday 31st October 10 am - 4 pm 
Field Centre Nailsworth GL6 0QE 
 
If you intend to come please get in touch as we 
will need to arrange the day according to the 
numbers and may have to cancel at the last minute 
if regulations change. 
If you have any initiatives to share but are unable 
to attend please also get in touch. 
simon.charter@live.co.uk or phone 07814 786682 
 
Programme 
 
10 am welcome apologies etc  
10.05 The Beaver - Judyth Sassoon 
11.15 break 
11-45 Boundary phenomena and micro flows- 
Philip Kilner 
13.00 lunch 
1400 AGM business, finances , appointment of 
officers, website, future activities, any other busi-
ness 
14.45 break 
15.00 Jupiter Saturn conjunction- Alex Murrell 
16.00 finish  
 

 

 

Colloquium in memory of Jochen Bockemühl  

From Saturday, March 13, 2021, 3 pm to Sunday, 
March 14, 12.30 pm, the Natural Science Section 
in Dornach will hold a colloquium in memory of 
Jochen Bockemühl (1928-2020). For information 

see: https://dasgoetheanum.com/jochen-
bockemuehl-1928-2020/.. 

Grants 
 

Science and Mathematics Group Funding:  
Call for Applications  
 
We are pleased to announce that small grants are 
available to members of the Science and Math-
ematics Group. We can contribute to projects and 
travel costs (e.g. to conferences). Please contact 
the treasurer Simon Charter, with a brief proposal 
outline and a breakdown of costs.  
simon.charter@live.co.uk, 01453 882114. 
 

Membership 
 
Note from the Treasurer and Membership Sec-
retary.  
 
The subscription for membership of the Science 
Group (including receipt of Newsletter) stands at 
£10 per year. If you have not already done so, 
please update your standing orders and let me 
know when this is done. I can still accept cheques 
but the local bank has closed so paying cheques in 
is more difficult. Standing orders or direct pay-
ment are preferable.  
 
Our account is "The Science Group"  
Sort code: 20-23-97 
Account No. 90800007 with Barclays.  
 
Membership subscription is £10 (UK), £12 (Eu-
rope) or £14 (elsewhere). For all membership and 
subscription queries please contact Simon Charter,  
simon.charter@live.co.uk, 01453 882114. 
 

 
Next Issue 

 
This newsletter is usually issued to members twice 
each year, in the spring and autumn. This year 
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publication of the spring issue was delayed by the 
covid crisis. The next newsletter is scheduled for 
spring 2021. Please send copy to the Editor: 
 js7892@bristol.ac.uk 

 

Disclaimer 

The opinions expressed in the published reports 
and articles are the authors’ own and do not 
necessarily reflect the views of the Editor or 
members of the Science and Mathematics Group 
of the AS of GB. 
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