5    Conclusions

Organic agriculture as a way of farming is spreading steadily. More farmers are making the switch and organic farming methods are become more refined. Only recently have questions been raised about the origins of plant and seed stock used in organic farming. Until now, organic farmers have had little choice but to use conventional propagating material, although conventionally produced varieties are also being propagated increasingly under organic conditions.

The fact that modern varieties perform better in organic conditions than do old varieties does not mean that the former are the best choice for organic farming. To further optimise organic farming systems, varieties must be developed with a higher adaptive capacity for specific regional conditions and lower levels of fertilisation, which are better able to suppress weeds,which have a high resistance to pests and diseases and which have better product quality, particularly keeping quality and taste.

Next to these specific desired characteristics for organic crop varieties (the product), the organic sector also sets requisites for breeding methods (the process). The general principles of organic agriculture and the first practical experiences with organic plant breeding point the way to realistic propositions for ecological and socio-economic preconditions for an organic plant breeding system.

Ecological preconditions should be aimed at ensuring a sustainable use of cultivars, specifically ensuring their natural reproductive ability when grown organically, their independent ability to adapt to (regional) organic farming conditions, and maintenance of their typical characteristics.

Socio-economic preconditions should be aimed at realising a closer cooperation between breeders and farmers and at amending existing legal and financial regulations for the seed trade to give organically produced seed a better chance on the market. One of the most important preconditions for organic breeding is a free exchange of genetically distinct stock material among breeders. Patenting (parts of) living organisms should therefore be prohibited.

In summary, the preconditions that we propose for this report are:

-    crossing and selection methods at crop and plant level are highly appropriate for organic plant breeding;

-    crossing techniques may be applied in organic plant breeding if pollination and seed formation occurs on the plant;

-    hybrids may be used in organic farming if F1 progeny are fertile and parent lines can be maintained in organic growing conditions (cms may only be applied if restorer lines are available);

-    breeding techniques at the cell level are not really appropriate for organic plant breeding, however they are so commonplace that alternatives will need to be developed before they can be banned;

-    genetic modification is an unsuitable technique for organic breeding and unnecessary for the development of organic agriculture;

-    DNA diagnostic methods might complement other selection methods in organic plant breeding.

The further development of organic agriculture should not depend on the use of genetically modified organisms (gmos). Organic agriculture needs a plant breeding system which respects basic organic principles and meets the needs of organic farmers.

Gene technology is finding its way into conventional plant breeding at such a rate that if the organic production chain is to remain gmo-free, an organic breeding system must be developed now, with or without the cooperation of conventional breeding firms.

The propositions and preconditions stated in this paper serve to focus the discussion on organic plant breeding. Such a discussion should include organic farmers, but also trading partners, professional organisations and social and environmental pressure groups, since a policy plan for an organic plant breeding system is best drawn up when it can count on broad support.

Notes

1. In this paper, for the sake of readability we have used the term 'organic' in the context of agriculture, farming or farm management systems when we mean both organic and biodynamic agriculture, farming, and so forth.

2. Organic agriculture is understood to be that section of agribusiness which operates in accordance with Council Regulation (EEC) no. 2092/91 on organic production or in accordance with the private production standards set by SKAL. Both the organic and biodynamic agricultural methods (producing EKO-label products) meet SKAL standards.

3. Council Directive 90/220/EEC defines a gmo as 'an organism in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination.'

4. SKAL publishes an annual list of producers of organic plant material and seed stock and the varieties being propagated. If non-treated material cannot be obtained on the market the Ministry of Agriculture, Nature Management and Fisheries (LASER) can grant exemptions. These exemptions only apply during the transition period up to 31 December 2000 (Council Regulation (EEC) No 2092/91) after which all propagating material used by organic farmers must be of organic origin.

5. Certain characteristics, such as climate change, apply to the whole of the Netherlands. However, the Netherlands can be divided into several regions for characteristics pertaining to soil type.

6. It is not Kunz' intention to develop different varieties for each individual farm, but his varieties are region-specific. Trial plots are located on organic farms which are representative for the region concerned.

    References

Almekinders, C.J.M., Fresco, L.O. en Struik, P.C., 1995. The need to study and manage variation in agro-ecosystems, Netherland Journal of Agricultural Science 43: 127-142.

Andeweg, et al., 1983. Een studie naar samenhangen tussen bodem, voorvrucht, gewasontwikkeling, bakproces en broodeigenschappen, Doctoraalscriptie LUW, Wageningen

Anonymous, 1989. Saatgut - wichtigster Bestandteil der Fruchtbarkeit des Betriebes, 1989, Bio- land 5:16-18

Anonymous, 1996. Umweltbeziehung der Planze, 1996, Saatgut juni:13-14

Baars, T., 1990. Het bosecosysteem als beeld voor het bedrijfsorganisme in de biologische landbouw, Louis Bolk Instituut, Driebergen

Balzer-Graf, U. en Rist, L., 1997. Vitalqualitätsunstersuchungen von transgenen Kartoffeln. In: Rist, R. en Rist, M., Biologischer Landbau statt Genmanipulation, Johannes Kreyenbùhl Akademie, Dùrnau, p31-42

Benvenuti, B., 1982. De technologisch administratieve taakomgeving (tate) van landbouwbedrijven, in: Arbeid en Technologie in de Veenkoloniën, Marquetalis, tijdschrift voor landbouw en politiek, Wageningen

Beringer, E. et al., 1996. Saatgut, in situ-Erhaltung und Entwicklung. Dokumentation zur Ausstellung. Keyserlinck Institut, Salem

Bockemùhl, J., 1982. Levensprocessen in de natuur, Vrij Geestesleven, Zeist

Bockemùhl, J., 1983. Vergleich zwischen Wild- und Kulturformen zum Verständnis der Nahrungspflanze und zum Finden einer Zielrichtung fùr die Zùchtung, Elemente der Naturwissenschaft 39:1-14

Bockemùhl, J., 1997. Ein Leitfaden zur Heilpflanzenerkenntnis

Doorgeest, M. 1990. Experimenteren met rassenmengsels van tarwe, Ekoland 1:8-10

Eysten, P., Hendriks, R., Overgaag, A., Stap, J., en Verdonschot, T., 1984. Een vergelijking van drie tarwerassen. Doctoraalscriptie LUW, Wageningen.

Goewie, E., 1994. Leeropdracht Vakgroep ecologische landbouw, Landbouw Universiteit Wageningen, Wageningen

Haperen, H. van, 1998. Regeneratie van knoflook, een aanzet tot biologisch-dynamisch veredelen. Louis Bolk Instituut, Driebergen (in voorbereiding)

Heselmans, M., 1998. De plant als machine, NRC 20-1-98, Rotterdam

Heyden, B. 1989 en 1990. Die bedeutung der winternahen Aussaat fùr die Erhaltung der Hofsorten, Mitteilungen des J. und C. Graf Keyserlinck Institutes, nr 3 en 4.

Holdrege, C., 1996. A question of genes, understanding life in context, Floris Books, Edinburgh

Jongerden, J., en Ruivenkamp G., 1996. Patronen van verscheidenheid, een verkennend onderzoek naar de afname van agro-biodiversiteit in Nederland en naar initiatieven om agro- biodiversiteit binnen en buiten agro-industriële productieketens te vevorderen, Wetenschapswinkel & Werkgroep Technologie en Agrarische Ontwikkeling, Wageningen

Kockelkoren, P., 1993. Van een plantaardig naar een plant-waardig bestaan. Ethische aspekten van biotechnologie bij planten, Ministerie van LNV, Den Haag

Kunz, P. en Karutz, C., 1991a. Op weg naar een veredeling die gericht is op de individuele bedrijfsomgeving - tarwe en spelt. Louis Bolk Instituut, Driebergen

Kunz, P. en Karutz C., 1991b. Pflanzenzùchtung dynamisch. Die Zùchtung standortangepasster Weizen- und Dinkelsorten. Erfahrungen, Ideen, Projekte. Forschungslabor am Goetheanum, Dornach

Kunz, P., 1994. Gentechniek in der Planzenzùchtung, Lebendige Erde 4:264-274

Kunz, P., Beers, A., Buchmann, M. en Rother, J., 1995. Backqualität bei Weizen aus òkologischem Anbau. In: Dewes T. und L.Schmitt (eds): Beitr.3 Wissenschaftstagung òkolog. Landbau Kiel. Wiss. Fachverlag Giessen

Kunz P, K.J. Mùller, H. Spiess, B. Heyden und E. Irion, 1997. Der Weizen-Ringversuch: biologisch-dynamische Weizenzùchter schliessen sich zusammen. Lebendige Erde nr 2.

Lammerts van Bueren, E., 1989. Hybriden ... een verantwoorde toekomst? Ekoland 9, no3, p.77- 78

Lammerts van Bueren, E., 1993. Biotechnologie en planten: veredeling of verarming? In: v/d Wal J. en Lammerts van Bueren, E., Zit er toekomst in ons DNA? Werkgroep genenmanipulatie en oordeelsvorming, Driebergen

Lammerts van Bueren, E., 1994. Zaaizaadvermeerdering voor de biologische groenteteelt. Een probleemverkennende studie, Louis Bolk Instituut, Driebergen

Lammerts van Bueren, E., 1996. Notitie Gentechnologie en Biologische landbouw, Louis Bolk Instituut, Driebergen

Landbouwpolitiek op langere termijn, 1961. Landbouwschap, Den Haag

Latour, B., 1989. De veiligheidsgordel, in: Schwarz, M. en Jansma, R., De technologische cultuur, De Balie, Amsterdam

Mansvelt, J.D., van en Mulder, J.A., 1993. European features for sustainable development: a contribution to the dialogue. In: Landscape and Urban Planning, 27: 67-90

Muggli, C., Schipholt, H.I. en Vries, A. de, 1990. Saatgutvermehrung von Roggen auf Haus Bollheim, Lebendige Erde, 3:176-182

Mùller, K.J., 1992. Ergebnisse aus einem 2jährigen Sortenversuch mit Winterroggen auf Hof Tangsehl, Getreideforschungsstelle Darzau.

Mùller, K.J., 1996. Qualitätsweizenanbau auf leichten Standorten, Lebendige Erde 2:123-132

Parlevliet, J.E., en Marrewijk G.A.M. van, 1993. Inleiding tot de plantenveredeling, Landbouwuniversiteit Wageningen, Wageningen

Platform Biologische landbouw en Voeding, 1993. Standpunt van het Platform Biologische Landbouw en Voeding ten aanzien van genetische manipulatie, Wageningen

Ploeg, J.D. van der, 1987. De verwetenschappelijking van de landbouwbeoefening, Landbouwuniversiteit Wageningen, Wageningen

Ploeg, J.D. van der, 1995. From structural development to structural involution: the impact of new development in Dutch agriculture, In: Ploeg J.D. van der en Dijk, G. van, Beyond modernisation, the impact of endogenous rural development, Van Gorcum, Assen

Raatsie, P., 19??. Saatgut - wichtigster Bestandteil der Fruchtbarkeit des Betriebes, Bio land/Schwerpunkt Saatgut 5.

Rood, E., 1993. Overzicht EEG en Nederlands levensmiddelenbeleid en -recht: inhoud, organisatie, ten uitvoerlegging, handhaving, Maklu, Apeldoorn

Scheepers, Ph. en Hendriks R., 1989. Herinneringen naar het moedergewas bij tarwe. Doctoraalscriptie LUW, Wageningen.

Scheller, E. 1993. Die Stickstoffversorgung der Pflanzen aus dem Stickstoffwechsel des Bodens. Ein Beitrag zu einer Pflanzenernährungslehre des Organischen Landbaus. Verlag J.Margraf Weikersheim.

Schmidt, G.W. 1994. Pflanzenverwandlung und Gentechnik. In: Gentechnik - was verursacht der Mensch durch den Griff in die Erbanlagen. Arbeitskreis fùr Ernährun gsforschung, Bad Liebenzell.

Schwarz, M., 1989, De technologische structuur, In: Schwarz, M. en Jansma, R., De technologische cultuur, De Balie, Amsterdam

Spiess, H., 1996. Sortenerhaltung auf den Hòfen, Saatgut juni:6-8

Steiner, R. 1992, (1924). Vruchtbare landbouw op biologisch-dynamische grondslag. Vrij Geestesleven, Zeist.

St. Hermes, 1995. Zaadteelt en zaaitijd. Verslag van een studieweekend met G.W.Schmidt in 1994 (Warmonderhof, Dronten).

Verhoog, H., 1997. Intrinsic value and animal welfare, In: Zutphen, L.F.M. van en Balls, M., Animal Alternatives, Welfare and Ethics, Elsevier Sciences BV

Visser, B., Jongerden, J. en Hardon, J., 1998. Agrobiodiversiteit en de effecten van nieuwe technologie,

Willems, B., 1996. Biologische groenteteelt; handleiding, achtergrond en praktijk, Jan van Arkel, Utrecht

Wiskerke, H., 1989. Zeeuwse akkerbouw tussen verandering en continuiteit, een sociologische studie naar diversiteit in landbouwbeoefening, technologieontwikkeling en plattelandsvernieuwing, proefschrift landbouwuniversiteit Wageningen, Wageningen

Wistinghausen, E., 1967. Die Ahrenbeetmethode von Martin Schmidt, Elementen der Naturwissenschaft 6.

Zadoks, J.C., 1991. "De ideologie van het zuivere tarweras' van A. Smit. WUB-magazine 13.6.91, LUW, Wageningen

Further references

Behrendt, U., 1983. Ein Vergleich der Wild- und Kulturform des Salates, Elementen der Naturwissenschaft 39: 15-22

Kunz, P., 1983. Entwicklungsstufen bei Gerste und Weizen - ein Beitrag zu einem Leitbild fùr die Zùchtung, Elemente der Naturwissenschaft 39:23-37

Kunz P. und Karutz, C., 1997. Zùchtung standortangepasster weizen- und Dinkelsorten. Tätigkeitsbericht 1996. Beiträge z. biologisch-dynamischen Landwirtschaft nr 3. Sonderheft Forschung.

St. Hermes, 1997. Herstel van plant en landschap. Regeneratie en ethergeografie. Verslag van een studieweekend met G.W.Schmidt in 1995.

Glossary

additive characteristics: characteristics (alleles) whose interaction is such that the phenotype of the heterozygote is exactly the average of the genotypes of the corresponding homozygous phenotypes

allele: alternate forms of a particular gene

organic agriculture: the general term for organic agriculture in the strict sense (farming without chemical fertilisers and pesticides) and biodynamic agriculture

biodynamic agriculture: one of the streams in organic agriculture, based on the agricultural teachings of Rudolf Steiner (1924); biodynamic farming is based on the concept of the farm as a living organism with a unique identity. An important feature of biodynamic farming is bringing the soil to life, by nourishing it with vegetable or animal concoctions and by stimulating it by exposure to cosmic forces

biotechnology: techniques and production processes using living organisms (gene technology falls under biotechnology)

chimera: an organism having two or more genetically distinct types of cells due to mutation, grafting, etc.

cms: cytoplasmic male sterility, a form of male sterility rooted in cytoplasmic DNA (this trait is only passed on in the female line)

differentiation: the process in which unspecialised cells develop specific functions and structure

dioecious: the male flowers are on different plants from the female flowers

diploid: diploid cells have two sets of chromosomes and thus two alleles for each trait (one from the father and one from the mother)

DNA: Deoxyribo-nucleic acid, forming the basic material in the chromosomes of the cell nucleus; DNA contains the genetic code and transmits the hereditary pattern

dominant: an allele is called dominant if its contribution to the phenotype overrules that of other alleles

to emasculate: in plants, to remove the stamens before the pollen has matured

gene: a chromosome fragment containing the code for a specific hereditary trait

gene technology: science and engineering techniques directed at the DNA level of organisms

genotype: the genetic constitution of an organism.

goethean phenomenology: a philosophy of science which aims to gain an understanding of the inner and outer phenomena in nature and in humans through open- minded observation. Also referred to as the the science of understanding (rather than the science of explaining).

haploid: having only one set of chromosomes

hermaphrodite: flowers with both pistils and stamens

heterosis: also called hybrid vigour; a phenomenon resulting from hybridisation, in which offspring display greater vigour, size, resistance etc. than the parents

heterozygote: a plant having two different alleles at a single locus on a chromosome and hence not breeding true to type for the particular character involved

homologous: chromosomes in a diploid cell have the same genetic sequence but originate from different parents

homozygous: an organism is homozygous for a particular character when it has inherited identical alleles for that character from both its parents

inbreeding depression: a phenomenon occuring in cross-pollinators in which the plant's vigour deteriorates as a consequence of repeated selfing

marker: a DNA fragment/character which is used in DNA or in vitro selection

microsatellite: DNA with a short, repeating basepair sequence, which can vary strongly in a population and which can be used for genetic fingerprinting

monoecious plant: male and female flowers grow on the same individual plant

mutagens: substances which can cause mutations

mutation: a change in a certain hereditary trait

phenotype: the net outward appearance of the organism

recessive: that one of any pair of allelic hereditary factors which, when both are present in the germ plasm, remain latent; only when two recessive alleles for the same character are inherited from the father and mother, will they contribute to the phenotype

restorer gene: genes which undo male sterility (such as cms)

self-incompatibility: a natural genetic system in cross-pollinators to prevent selfing as much as possible. Self-incompatible plants cannot fertilise themselves

tetraploid: a cell which has four sets of chromosomes

translocation: rearrangement of chromosomes, in which chromosomes cut and non-homologous chromosome fragments join up again

List of abbreviations

AFLPAmplified Fragment Length Polymorphism
ELISAEnzyme-linked immunoabsorbent assay
gmogenetically modified organism
RAPDRandom Amplified Polymorphic DNA
RFLPRandom Fragment Length Polymorphism

Next section of "Sustainable Organic Plant Breeding."

Back to List of Contents

To Ifgene home page